
Anticipating Team Roles and Interactions When 
Planning a Software Development Project

Jeffrey H. Schweriner, Project Manager, Qwest Communications International, Inc.
Introduction

Most projects, no matter what the industry, require a

team. Every team member has specified tasks designed to

carry out the development and implementation of the

project. But for successful projects, every team member

not only performs their specified tasks, but members

play a role as well. By definition, a role is defined as “a

part or character to be played by an actor” (Random

House 1979). Indeed, project roles are defined not by

what a person does, but rather by what part they play or

whom they act as.

Project roles become extremely important in highly

technical projects such as software development. In soft-

ware development, the nature of the work becomes more

complex, and time constraints are frequently imposed. Al-

though powerful programming languages and advanced

engineering concepts are the available tools for producing

good software, multiple developers are required to pro-

duce sophisticated software systems. How the human re-

sources of programming are organized and managed be-

comes critical in the success or failure of a software

development project. The goal of this paper is to identify

a model by which a manager can anticipate and build a

software development team, and how the roles and inter-

actions of chosen team members can contribute to the suc-

cess (or failure) of a software project.

Building the Software Development Team

Complex software development projects require critical

decision-making in the upstream portion of the software

development process, particularly during the specifica-

tion and design phases. One of the most important

upstream decisions is in building the development team.

From a managerial perspective, many factors must be

considered when building the team. For more complex

projects, knowledge from multiple technical and func-

tional domains is a necessity (Walz et al. 1993). Walz et

al. claim that in an ideal situation, a software design

team is staffed so that both the levels and distribution of

knowledge within the team match those required for the

successful completion of the project. Unfortunately, only
Proceedings of the 30th Annual Project Manag

Philadelphia, Pennsylvania, USA: Pape
under ideal circumstances can the above statement be

applied. In the real world, a manager is often faced with

the technical and knowledge shortfalls of team members.

In most situations, individual team members must

acquire additional information before accomplishing

their set tasks. To bridge the knowledge gap, formal-

training sessions, group meetings, and discussions may

be frequently required. The most productive activities of

the team come from the integration of knowledge. Walz

et al. (1993) summarize as follows:

A software design team seldom starts its life with

shared models of the system to be built. Instead,

these models develop over time as team members

learn from one another about the expected behav-

ior of the application and the computational struc-

tures required to produce this behavior. This

means that team members need to be speaking the

same language (or, at least, a dialect whose seman-

tics are similar enough to facilitate communication

and understanding) in order to share knowledge

about the system.

During the knowledge integration process, the manager

is now faced with handling multiple, concurrent, and often

conflicting goals. The manager needs to be able to leverage

the specific strengths of individual people while still main-

taining the uniformity and stability of the pending project.

It appears that although technical expertise and knowl-

edge of participants are necessary for a successful software

project, the actual “role” a team member plays becomes a

critical factor in the interaction of team members, and how

successful the team is in reaching project goals. In the team-

building process, the manager is then faced with two very im-

portant questions: how do the group members interact to ac-

quire, share, and integrate project relevant knowledge, and

how do participation styles differ among team members?

Group Interaction Model

Several models have been published to aid managers

understanding how group members interact to achieve

project goals. One model, which has been directly applied

to the software development process, is that of
ement Institute 1999 Seminars & Symposium

rs Presented October 10 to 16, 1999



Exhibit 1. 
Constantine (1993). Constantine has devised a paradig-

matic framework describing various types of groups.

According to Constantine, this framework provides a

model for “the organization and management of collec-

tive human activities” (1993). In other words, this model

provides a general framework that can be applied toward

building a software development team within the dynam-

ics of the project, and within the corporate structure.

Constantine sets the stage by observing that “everyday life

affords us countless examples of groups of people carry-

ing out a joint activity or tasks in a coordinated manner”

(1993) To emphasize his point, he compares a family din-

ner to a software project. He points out that the common

thread between the family dinner and the software pro-

ject is that there is always “recognizably consistent pat-

terns of interaction” (1993). From his observations, he

aims to establish a conceptual framework for under-

standing how a group of people jointly involved in a com-

mon activity or goal carry it to completion.

Exhibit 1 is the paradigm that Constantine uses to de-

scribe how group members organize and coordinate daily

activities.

The lower right corner of Exhibit 1 represents the

traditional hierarchy or closed paradigm. Within this
Proceedings of the 30th Annual Project Manag

Philadelphia, Pennsylvania, USA: Pape
paradigm, continuity of a project is maintained through

established standards and rules of operation. Stability is

maintained by controlling for deviations from estab-

lished norms and patterns. The purest example of a

closed paradigm cited by Constantine is that of the mil-

itary services; however, this type of paradigm may be

applied to groups in a large corporate structure that re-

peatedly produce the same type of software.

On the complete opposite side of the model shown in

Exhibit 1 (upper left) is the random paradigm, which is

the antithesis of the closed paradigm. This paradigm heav-

ily emphasizes innovation through creative autonomy of

team members. By giving each team member the freedom

to create and act independently, a manager can create a

“breakthrough project team,” which may lead to develop-

ing a new technology. This paradigm has been successful-

ly applied by Hyman (1993) and will be discussed later.

The open paradigm (upper right corner) in Exhibit 1 is a

synthesis of the closed and random paradigms. The open

paradigm team is based on adaptive collaboration and the

integrating of innovation while maintaining stability. Indi-

viduals with collective ideas and interests work together

through negotiation and discussion. This type of team works

best with small software development teams. Rettig and
ement Institute 1999 Seminars & Symposium

rs Presented October 10 to 16, 1999



Simons (1993) have published an excellent example of an

open structured team that will be reviewed later in this paper.

The final paradigm in the model in Exhibit 1, opposite

of the open paradigm, is the synchronous or harmonious

model. This model is based on “harmonious and effortless

coordination through the alignment of members with a

common vision that reflects the collective.” A synchronous

or harmonious team is useful in simple projects, whereby

each team member can program an independent piece of

software, and the collective software completes the whole

project.

From the various paradigms described in Constantine’s

model, a manager can begin to explore how effective pro-

ject teams are established and how team roles fit within

the organization of the project.

In a 1989 study, Larson and LaFasto interviewed team

members to learn how the people who performed best

within different kinds of teams were described. Constan-

tine has reviewed Larson and LaFasto’s conclusions, and

has refined their results by incorporating his model cou-

pled with his observations on programming teams:

People who do best in closed paradigm (tactical)

teams have been described as loyal, committed and

action-oriented. They seem to have a strong sense

of urgency and respond well to leadership. People

who work best within the creative environment of

a random (or breakthrough) team are independent

thinkers, often artistic or intellectual. They are

persevering self-starters who do not need orders to

get going or close supervision to keep going.

People who thrive in the collaborative consensus-

building or open (problem-solving) teams are

practical minded by sensitive to “people issues.”

They have integrity and are seen as trustworthy by

peers, exhibiting intelligence coupled with good

interpersonal skills. It appears that those who fit

well in strongly synchronous teams are intuitive,

somewhat introverted, yet people sensitive. They

are good at linking the larger picture to specific

action and work with quiet efficiency.

Constantine’s model provides a manager with a more

rational approach to building a team. It seems that each

paradigm “reinforces and is reinforced by” the behaviors

of individual team members.

Hyman (1993) has effectively applied Constantine’s

“random team” paradigm to her software development

project. The Software Reusability Department of ARINC

Research Corporation, Annapolis, Maryland, USA, began

as a five-member team with a goal to create reusable li-

braries of software components. At the onset of the project,
Proceedings of the 30th Annual Project Manag

Philadelphia, Pennsylvania, USA: Pape
Hyman surmised that there was not enough budget, time,

or resources to meet all of the project objectives. From this,

she realistically stated that “order and simplicity are not the

norm, chaos and complexity are the rule” (1993) To reach

her project goals, she decided to “capitalize” on chaos

through the individual talents of the team members. Each

member was given the freedom to explore new technolo-

gies in order to solve complex problems. Hyman uses the

term “innovative anarchy” to describe the dynamic of the

project team:

This description [creative anarchy] fit our creative

chaos in which there are no fixed roles, a strong

sense of individuality, and problem solutions based

on innovation and creativity. It was an exciting and

fun work environment that amplified creativity

and brought out the best in individuals.

The original five-person team relied heavily on creative

independence, individual initiative, integrity, and trust.

However, the team members possessed various attributes,

which helped them maintain their roles as individuals

while still working cohesively to achieve the project goals.

Hyman notes that members of the team were “technical-

ly gifted, high-energy, self motivated risk takers.” Individ-

ual goals and team goals were closely aligned, allowing for

the reinforcement of individual achievements through suc-

cessful participation.

It is worthwhile to note that as Hyman’s team grew ex-

ponentially, the stability and cohesiveness of the team began

to weaken. As new team members were added to the group,

their “new perspectives” disrupted the harmony developed

by the original group (1993). In software development, the

size of the team is of utmost importance. According to Rob-

bins, smaller teams lend themselves to an increased ac-

countability on the part of the members (1989). When de-

scribing small teams, McCarthy cites that this increased

accountability allows team members to develop a higher

identity within the team—an identity that helps to enhance

their role in the team (1995). As discussed next, Rettig and

Simons were able to succeed in their project by maintain-

ing small teams (1993). In order to avoid team failure in a

software development project, a manager must build small

teams (ten people or less) to maintain the cohesiveness

among individual team members.

Rettig and Simons have directly applied Constantine’s

“open structured team” paradigm to a software develop-

ment project (1993). This paradigm was successfully used

by the Academic Computing department of the Summer

Institute of Linguistics (SIL) in Dallas, Texas, USA. The

goal of its project was to develop a computer system that

would facilitate software applications that deal with large
ement Institute 1999 Seminars & Symposium

rs Presented October 10 to 16, 1999



Exhibit 2. 
collections of structured multilingual information. It be-

gan to organize its software development team at the start

of this five-year development project. Early in the forma-

tion of the team, roles were specifically assigned to team

members. The assigned roles were as follows:

• Facilitator: schedule and lead team meetings.

• Archivist: Take minutes of team meetings and maintain

an archive of project documents.

• Manager: Maintain a chart of progress toward project

milestones to give the project team feedback on

progress toward goals, to assist the project team in

planning activities.

• Contact: Serve as the contact point between the project

team and the guidance team.

Once the set roles were established, Rettig and Simons

were able to observe the effectiveness of these set roles

(1993). If, during meetings, various members did not seem

to fit the assigned roles, the team members were allowed

to rotate into other roles. With time, the set roles tended

to become habits, and the role assignments became less

formal. For example: during a meeting, if one member is

observed to be taking notes (archivist), he may be asked to

send everyone a copy. Rettig and Simons believe that the

attention to interpersonal communication based on an

open structured team became an important “ingredient”

in the early successes of their project (1993).

There is an interesting similarity between the roles

defined by Rettig and Simons, and those of Margerison

and McCann in their 1990 book, Team Management:
Practical New Approaches. Margerison and McCann

develop a basic model of an integrated team and 
Proceedings of the 30th Annual Project Manag

Philadelphia, Pennsylvania, USA: Pape
identify nine key team roles in the their study on team

management.

Margerison and McCann discuss nine key roles as part

of their Team Management Wheel (see Exhibit 2). There

are eight sections of the wheel corresponding to eight dif-

ferent roles or work preferences, which are grouped into

four areas. Standing out among the other roles is that of a

linker, which can be most often associated with a Project

Manager. Note that each role has a two word description,

e.g. reporter-advisor. The first word is used to describe a

behavior description and the second word is used to de-

scribe the work function. As Margerison and McCann de-

scribe in their book:

• Advisors enjoy reporting data.

• Innovators enjoy creating ideas.

• Promoters enjoy exploring opportunities.

• Developers enjoy assessing plans.

• Organizers enjoy thrusting into action.

• Producers enjoy concluding tasks.

• Inspectors enjoy controlling procedures.

• Maintainers enjoy upholding standards.

Each role is worth further discussion.

Producer

Provides direction and follow through. These people

enjoy working to set procedures.

Creator

Initiates creative ideas. The role of creator provides inno-

vation and often needs to be managed in such a way that

the creator is not constrained by the corporate structure.
ement Institute 1999 Seminars & Symposium

rs Presented October 10 to 16, 1999



Controller

Examines details and enforces rules. Controllers enjoy

doing detailed work and checking facts and figures.

Organizer

Provides structure. This person may be the project manag-

er, the one to set up procedures and systems. An organizer

will set up the process to ensure that deadlines are met.

Adviser

Encourages the search for more information. This may

not necessarily be an immediate team member, but

rather an experienced “old-timer” who can advise the

team (which, in software development, may consist of

younger, less-experienced people) on the right way to

move forward.

Assessor

Offers insightful analysis of options. In software, an

assessor may also be called an “information architect,” a

designer who puts practical application to the ideas of

the initial creative team.

Maintainer

Fights external battles. An account executive for a soft-

ware team often plays the role of a maintainer, someone

who will defend the team against outside criticism and

conflict.

Promoter

Champions ideas after they’re initiated. These people

play a key role, exploring new ways of doing things out-

side the organization. In software development, this per-

son might investigate new development tools.

Linker

Coordinates and integrates. This is the role that best

describes the project manager in software development.

In their book, Margerison and McCann describe eleven

key linking skills: 1) active listening, 2) communication,

3) problem solving and counseling, 4) team development,

5) work allocation, 6) team relationships, 7) delegation,

8) quality standards, 9) objectives setting, 10) interface

management, and 11) participative decision-making.

In 1997 and 1998, I was involved in a software develop-

ment project that Margerison and McCann might describe as

a textbook example of how critical team roles are. This pro-

ject was the development of an educational, historical CD-

ROM. This project had several challenges from the onset:

• The content of the CD-ROM was of a sensitive nature

that required great scrutiny from outside reviewers.
Proceedings of the 30th Annual Project Manag

Philadelphia, Pennsylvania, USA: Pape
• Development demanded a wide range of skills and

disciplines.

• The development team was large—the core internal team

consisted of eight people, with up to thirty more people

assisting throughout the various stages of development.

• Accepted as a new job during a slight downturn in busi-

ness, the project was not looked upon as favorably as

business began to pick up.

In retrospect, key team roles were associated with our

corporate titles. Had these roles not been filled, the pro-

ject would not have achieved the success that it did:

• Director of Project Management (Assessor and Orga-

nizer): This person set up the team structure, and de-

fined the project boundaries.

• Creative Director (Creator and Promoter): Our Cre-

ative Director was brilliant in initiating ideas and find-

ing new, exciting ways of presenting historical, and of-

ten dry, material.

• Lead Historian and Researchers (Advisor): This person,

outside the corporation, encouraged the search for

more information, ensuring the historical integrity of

the CD-ROM.

• Account Executive (Maintainer): Kept the corporation

feeling comfortable about the project and kept a ner-

vous client feeling good about the project.

• Project Manager (Linker): This role was critical in en-

suring that all the various groups (artists, programmers,

writers, researchers, QA, and producers) were working

together efficiently and effectively.

• Production Coordinator and Quality Assurance (Con-

trollers): The CD-ROM contained an enormous num-

ber of facts, figures, names, and photographs. Detailed-

oriented people were an absolute necessity, especially

during shipping.

Although Margerison and McCann’s team model has

not been defined specifically for software development, it

seems that the roles defined in their model can directly be

applied to building teams within the software industry. To

show how this may be accomplished, I have reorganized

the roles described by Margerison and McCann (1990)

into the framework provided by Constantine (1993). Soft-

ware projects are often too complex to consider as a uni-

form model. To aid in future project planning, I have de-

veloped a model whereby each of the Constantine

paradigms can be applied to development teams during

each phase of a software project, as depicted in Exhibit 3.

Conception/Proposal Phase

This phase is characterized by laying the groundwork for

the project, organizing a team, and promoting the project.
ement Institute 1999 Seminars & Symposium

rs Presented October 10 to 16, 1999



Exhibit 3. 
Rules are enforced, standards are set, and parameters are

established.

Specification Phase

This phase emphasizes innovation through creative

autonomy of team members. As stated earlier, by giving

each team member the freedom to create and act inde-

pendently, a manager can create a “breakthrough project

team,” which may lead to developing a new technology.

Development Phase

“Adaptive collaboration and the integrating of innova-

tion while maintaining stability” can characterize this

phase. The intense coordination and integration of

development demand leadership from the project man-

ager and production coordinator in linker and producer-

type roles.

Shipping/Launch Phase

Shipping, the final phase of software development, close-

ly resembles a synchronous model, where the team is

aligned toward a common vision—launching the prod-

uct. The dominant responsibilities during this phase are
Proceedings of the 30th Annual Project Manage

Philadelphia, Pennsylvania, USA: Paper
that of quality assurance, in a controller or producer-

type role.

This superimposed model is a comprehensive one for

developing team roles in a software development project.

This model considers the strengths and knowledge of each

team member and provides a structured paradigm for each

phase of the development process.

Conclusion

As reviewed in this paper, a project manager has sev-

eral models to chose from in organizing a software

development team at the upstream portion of a pro-

ject. Additionally, it is clear that successful software

teams are more than just the sum of their team mem-

bers performing their assigned duties—team members

also play important roles that allow the team to func-

tion as a dynamic unit. In addition, team members (in

small teams) will gravitate toward the roles that fit

their personalities.

Several guidebooks and publications can aid managers

in forming a strong software development team. Margeri-

son and McCann recommend a questionnaire for deter-

mining who on a team is best suited for a particular role.

Their Team Management Index poses a series of questions

(based on the principles of the Myers-Briggs personality

test) to gather information on the personal strengths and

weaknesses of each prospective team member.
ment Institute 1999 Seminars & Symposium

s Presented October 10 to 16, 1999



In addition, section 9.1 of A Guide to the Project Man-
agement Body of Knowledge (PMBOK™ Guide) discusses

Organizational Planning of which identifying team roles

is a part. A project manager should consider what roles

will be required and what roles will be dominant during

the different phases of the project. Depending on how “re-

sponsibility-oriented” the roles on a project are, the man-

ager may decide not to document the role assignments.

For example, a manager may decide to recruit a certain in-

dividual in the organization to play the role of “Adviser.”

This decision may be more appropriate for one’s own per-

sonal journal than for a project plan. While it may take

considerable effort to plan for project team roles, it can

make the difference between a mediocre and high-perfor-

mance software development team..

References

Constantine, Larry L. 1993 Work Organization: Paradigms for
Project Management and Organization. Communications of the
ACM 36: 35–43.

Hyman, Risa B. 1993. Creative Chaos in High Performance
Teams: An Experience Report. Communications of the ACM 36:
57–60.

Larson, C. E., and F.M. J. LaFasto. Teamwork: What Must Go
Right/What Can Go Wrong. Newbury Park, CA: Sage, 1989.

Margerison C., and D. McCann. 1990. Team Management: Prac-
tical New Approaches. London: Mercury Books.

McCarthy, Jim. 1995. The Dynamics of Software Development.
Microsoft Press: Redmond CA.

Random House, Inc. 1979. The Random House College Dictio-
nary.

Rettig, Marc, and Gary Simons. 1993. A Project Planning and
Development Process for Small Teams. Communications of the ACM
36: 45–55.

Robbins, Stephen P. 1998. Organizational Behavior. Prentice
Hall: Upper Saddle River. NJ.

Walz, D. B., J. J. Elam, and B. Curtis. 1993. Inside a Software

Design Team: Knowledge Acquisition, Sharing, and Integration.

Communications of the ACM
Proceedings of the 30th Annual Project Management Institute 1999 Seminars & Symposium

Philadelphia, Pennsylvania, USA: Papers Presented October 10 to 16, 1999


	a: 


